Bioprocess Engineering & Technologies in Reducing Waste and Creating Value

Sandeep B. Kale, PhD

QbD Purple Advanced Technologies Pvt. Ltd. (QPAT), 16, Sai Durga, Sahyadri Farms, Baner, Pune-411045, India <u>sandeep.kale@qpattech.com</u>, <u>qbdpurple@gmail.com</u>; <u>www.qpattech.com</u>

24th September 2020 @Venture Center, Pune

QPAT: Research and Scale up Portfolio

- Process Synthesis and Product isolation, Characterization
- Extraction, Separation and Purification of
 - Natural products & ingredients Herbal Products and API
 - Biotherapeutics proteins, enzymes and antibodies, plasma proteins, hormones etc.
 - Fermentation
 - Synthetic intermediates and API
 - Metal ions
 - Sugar, Sugar Conversion and Water
 - Decolourization, detoxification, de-bittering and odd flavour removal
- Resin screening and process development
- Process optimization, integration, basic Engineering of pilot and commercial facility
- Lab demonstration Scale Up and Commercialization
 - 1. Pharma API Purification
 - 2. Natural Products, Nutraceuticals etc.
 - **3.** Food and Agroprocessing Waste Valorisation (secondary agriculture)
 - 4. Fermentation (USP)
 - 5. Process engineering, Key Equipments & Commercialization

Bioprocess Technology (commercial scale) = **Biosciences + Engineering**

Design, Development and Scale up of Processes and equipment's for the manufacturing of products such as agriculture, food, feed, biopharmaceuticals, nutraceuticals, biochemicals and biopolymers, paper etc. from biological material

Waste is a Resource

Creating Health & Wealth from Rejected Food and Agroprocessing Resources

Example of food wastes - worldwide

FRUIT & VEGETABLES FOOD LOSSES

Along with roots and tubers, fruit and vegetables have the highest wastage rates of any food products; almost half of all the fruit and vegetables produced are wasted.

3.7 trillion apples

In industrialized countries, consumers throw away 286 million tonnes of cereal products.

763 billion boxes of pasta

32% of global food supply by weight

24% of global food supply by energy content (calories)

Losses at production are more prevalent in developing regions while food waste at consumption is more prevalent in developed regions

Majority of losses are during

- a) Fruits and vegetables
 - Agriculture and Processing
- b) Cereals

- Post harvest, processing and distribution

c) Oilseeds & pulses

Agriculture, post harvest and Processing

ZU **OILSEEDS & PULSES** FOOD LOSSES

Every year, 22% of the global production of oilseeds and pulses is lost or wasted.

www.fao.org

Discarded Food - Valuable Unused Resources

Selected Grocery Items

Table 5. Farm to consumer waste hot spots for 5 selected grocery items.¹⁴³

	Loss profile across supply chain (%)					
Food waste type	Total Wasted (%)	Farming	Processing	Retail	Consumer	
Grapes	24	6	<1	<1	16	
Apples	41	11	2	<1	27	
Bananas	20	2	7	1	10	
Bagged salad	68	17	15	1	35	
Bakery	48	5	14	4	25	

Sze Ki Lin et al., Biofuels, Bioprod. Bioref. 8:686-715 (2014)

Bioprocessing of Food/Agro-processing Wastes

Efficient, Scalable and Viable Conversion Technologies

Value added Products (Secondary Agricultural Scenario)

Bioprocessing of Bioresources – Building Business Plan

Food/Agroprocessing wastes

Small Molecules: Nutra, Health, Pharma, Cosmetics, Agro application
Gaseous Fuels: Bio-CNG;
liquid Fuels: Bioethanol, Biobutanol
Polymers (Cellulose, Pectin, Proteins): Food and Pharma applications
Inorganic: Silica, Minerals

'Efficient - Extraction, Isolation and Purification of products

Bioprocessing for Agrobased Products

How Do We Reduce Processing Cost And Increase Yields ?

Membrane Separation: TFF - UF, MF, NF

 Integration with adsorptive separation

- Isolation biopolymers (proteins)
- Removal of proteins or polymeric mass from small bioproducts
- Desalting
- Concentration of biopolymers or small mol. Wt. bioproducts

Separation and Purification Processes

- Separation is achieved by preferential adsorption of components in a chromatographic bed.
- **Selective adsorption leads to** different migration velocities

Adsorbent or Adsorbent/catalyst

Liquid

flow

Slow component

Chromatographic column

Eng. Sci., 49, p469, 1994 Chem.

Processing Plant Requirements

1) Raw Material (Input and Process chemicals - receiving bay, and raw material ware house)

2) Infrastructure in the plant area

- a) Permissions (Pollution control board, manufacturing licence/s, solvent storage and usage permissions if any)
- b) Washing area and machine (or manual approach)
- c) Crushing (if any)
- d) Extractors Solid-Liquid, Liquid-Liquid
- e) Filtration & Purification equipment's (if any)
- f) Drying equipment's (spray drying, tray drying, drum dryer etc)
- g) Blenders, granulators etc.
- h) Packaging units (bags, drums etc.)
- i) Finished good warehouse
- j) QC, QA and documentation
- k) ETP effluent treatment plant
- I) Utilities (Boiler, chiller, cooling tower, power, water, vacuum etc.)
- m) Manpower (skilled and unskilled) HR

Bioprocessing of Agro-produce for Valorization

RM-I	RM - II	RM - III	RM - IV
1) TOMATO	1) Peas	1) Milk Whey	, 1) Sugar
2) POMOGRENATE	2) Soya Meal		2) Starch
3) MANGO	3) Rice Bran (defatted)	
4) CITRUS/ORANGE	4) Guar Meal		
5) GRAPES	5) Moong		
6) SPINACH	6) (Lentils/pulses etc.)		
7) Red cabbage			
8) Capsicum			
9) Carrot			
10)Bacopa			
Nutraceuticals Heal Suppliments	Functional ingred Proteins & hydrol	ients S ysates B	weeteners iopolymers

Phytopharmaceuticals

Modified sugars

Pomogrenate production in India

 India ranks first in pomegranate production (Productivity= 7.4 tonnes/ hectare) in the world.

 Maharashtra, pomegranate basket of India alone shows productivity of 6.7 tonnes/ hectare

Value Addition:

- ✓ 50% peels from pomegranate juice processing Industry
- ✓ 20% post harvest losses- not suitable for export and domestic market

Pomogrenate

Composition of pomegranate peel powder

Ref: Viuda-Martos et al.,2010

Pomogrenate Waste Processing

<u>Basis</u>

-Total Pomogrenate (waste) : e.g. 10 tons/day

- Number of days of processing: 100 days

Sr. No.	Product recovered	Quantity per day (kg)	Total in a season 100 days (Tons)
1	Pomogrenate Extract (Type I)	400	40
2	Pomogrenate Extract (Type II)	800	80
3	Pomogrenate Extract (Type III)	320	32
4	Residue	3840	384
5	Total		536
		Revenue: 12	00 to 1500 Lakhs

Processing of Tomato Juice/Waste for Glutamate concentrate

Water

Carbohydrates - Major- Fructose, Glucose etc. Organic acids - Citric acid, succinic acid etc. Amino acids (Major: Glutamate and aspartic acid) Protein Fat(in seeds) Minerals: Na, Ca, Mg, K, P, Fe & Mn Carotenoids (as Lycopene) Fiber Vitamin C

Composition of starting material

Glutamate:	0.05 to 0.3%
Sugars:	4.5%
Organic acids:	0.9%
Amin acids:	0.1%
Proteins:	3.2%
Polysaccharides:	1.2%
Ash:	0.05%
Moisture/water:	89.8%

Apple Pomace

The Idea

The selective adsorption technology separates potato proteins as potato protein isolate (PPI) and individual two classes of useful potato proteins Patatin (Pat) and Protease Inhibitors (PI)

Technology simultaneously detoxifies the protein preparations by removing ANFs like glycoalkaloids (which are also recovered to make value added e.g. Solanidine)

The technology can be used to recover potato proteins (growing market), and starch and help to recycle the water from washing, blanching and other steps

Similar idea can be extended to pasta washings for starch and protein recovery (and water recycle)

Proteins from oilseeds, pulses, lentils and other agro-produce

Technologies for Sugar cane/Table sugar

Summary Points

- Raw material sourcing and availability
- Fruit and vegetable wastes are seasonal
- To produce multiple products and create biorefinery
- Better utilization of assets and early payback
- As a business case decentralized processing plants
- Affordable products having value creation
- Quantity with supply chain

Contact:

Dr. Sandeep Kale

Email: qbdpurple@gmail.com

Web: www.qpattech.com

Mobile: +91-9594351422

Bioprocessing technologies forHealth and Nutrition Mission

TAKE CARE OF YOUR BODY. IT'S THE ONLY PLACE YOU HAVE TO LIVE IN.